Soal Ujian UT Akuntansi ESPA4123 Statistika Ekonomi dan Kunci Jawaban
Soal UT Akuntansi ESPA4123 Statistika Ekonomi dilengkapi dengan kunci jawabannya kami share buat teman-teman UT jurusan Akuntansi yang saat ini sedang berada di semester 5 yang tak lama lagi akan melaksanakan kegiatan UAS setelah selesai tutorial. Pada artikel atau postingan kami sebelumnya, kami juga telah berbagi untuk Anda Soal UT Akuntansi Semester 5 yaitu Soal Ujian UT Akuntansi EKMA4314 Akuntansi Manajemen yang juga tentunya harus Anda pelajari juga karena mata kuliah tersebut ada di semester 5 ini.
Teman-teman Mahasiswa Universitas Terbuka tentunya tahu bahwa di dalam pelaksanaan pembelajaran di UT itu tutorialnya hanya dilaksanakan sebanyak delapan kali saja dalam satu semesternya selama dua bulan. Dari tutorial tersebut tentunya tak akan cukup waktu jika harus mengulas semua materi-materi yang pada pada modul kuliah. Disinilah Mahasiswa harus ekstra belajar mandiri di luar kegiatan pembelajaran. Apalagi kita tahu setelah kegiatan tutorial berakhir, Mahasiswa akan menghadapi kegiatan UAS.
Soal Ujian UT Akuntansi Semester 5 Lainnya:
Nilai UAS sendiri merupakan salah satu nilai yang sangat di perhitungkan dalam menentukan nilai akhir dan menentukan Anda lulus atau tidaknya pada mata kuliah yang sedang Anda hadapi. Tak cukup jika Anda hanya mengharapkan nilai yang di berikan oleh Dosen atau Tutor saja. Maka dari itu mulailah giat untuk belajar, nah salah satu bahan belajar yang bisa Anda pakai ialah dengan mempelajari Soal UT yang kami bagikan ini.
A. interpretasi data
B. analisis data
C. presentasi data
D. tabulasi data
Jawab:
B. Benar, Analisis data adalah kegiatan menganalisis data yang sudah dikumpulkan dan telah disusun. Analisis data dilakukan dengan menggunakan metodee statistic seperti: rata-rata hitung , penyimpangan, regresi maupun korelasi. Dengan melakukan analisis data, kita dapat memperoleh gambaran keseluruhan dari data yang dikumpulkan.
2. Data yang dikumpulkan dinyatakan dalam bentuk angka, seperti berat balita di desa Gaharu, disebut sebagai data…..
A. kuantitatif
B. kualitatif
C. primer
D. sekunder
Jawab:
A. Benar, Dalam suatu penelitian sebagian besar data yang dikumpulkan berupa data kuantitatif yaitu data yang dinyatakan dengan menggunakan angka. Sebagai contoh: umur responden, pendapatan, jumlah anak, luas tanah yang dimiliki, jumlah barang yang diproduksi dan sebagainya. Dari data kuantitaif tersebut kita dapat menghitung dan mengetahui karakteristik obyek penelitian.
3. Dari hasil penelitian diperoleh data sebagai berikut: 21, 22, 32, 35, 46, 43, 15, 29, hitung rentang datanya (range).
A. 21
B. 26
C. 28
D. 31
Jawab:
D. Benar, Data diurutkan dari terkecil sampai terbesar dan rentang datanya = data terbesar – data terkecil.
Urutan data: 15, 21, 22, 29, 32, 35, 43, 45, rentang datanya = 46 – 15 = 31
4. Jika diketahui range = 60 dan banyaknya kelas yang diperoleh sebanyak 8, maka nilai kelas intervalnya adalah…
A. 7,3
B. 7
C. 7,5
D. 6,5
Jawab:
C. Benar, Lebar kelas (interval kelas) dapat dihitung dengan membagi range dengan banyaknya kelas yang sudah dibulatkan ? 60 : 8 = 7,5
5. Diketahui data sebagai berikut:
Berapakah frekuensi relatif kelas keempat?
A. 22.22 %
B. 22,52 %
C. 23,45 %
D. 23,55%
Jawab:
A. Benar, Distribusi frekuensi relative adalah distribusi frekuensi yang frekuensinya tidak dinyatakan dalam angka absolute, tetapi dinyatakan dalam angka relative atau dalam persentase dari jumlah frekuensi semua kelas yang ada ? 12 : 54 = 0,2222 x100 % = 22,22%
6. Diketahui data sebagai berikut:
Berapakah frekuensi kumulatif hasil produksi yang kurang dari 40?
A. 27
B. 30
C. 39
D. 54
Jawab:
C. Distribusi frekuensi kumulatif adalah distribusi frekuensi yang secara berturut-turut dan bertahap memasukakan frekuensi pada kelas-kelas yang lain. ? 8+10+9+12 = 39
7. Diketahui data tentang hasil penjualan nasi goreng yang sudah dikelompokkan sebagai berikut:
Berapa rata-rata hitungnya?
A. 48,25
B. 48,45
C. 48,75
D. 48.95
Jawab:
D. ? rata-rata hitungnya = 1860 :38 = 48,95
8. Diketahui data tingkat keserdasan anak SD sebagai berikut:
Hitung nilai desil keempatnya
A. 99,75
B. 99,95
C. 100,25
D. 100,95
Jawab:
D. Pengertian desil adalah angka yang membagi data menjadi 10 bagian yang sama besar.
Untuk mempelajari lebih lanjut buka modul hal 2.27 dst.
9. Diketahui data produksi bawang merah merah per bulan yang tidak dikelompokkan sebagai berikut: 20, 35, 35, 40, 50. Hitung deviasi rata-ratanya.
A. 7,4
B. 7,2
C. 6,6
D. 6
Jawab:
B. Deviasi rata-rata adalah rata-rata penyimpangan data dari rata-rata (mean)nya.
10. Dari pengolahan hasil penelitian panen apel didapatkan data sebagi berikut: n = 120,
hitung deviasi standarnya.
A. 5
B. 7
C. 8
D. 9
Jawab:
A. Oleh karena sudah tersedia hasil pengolahan
berarti data sudah dikelompokkan, maka rumus yang digunakan adalah
11. Hitunglah kecondongannya jika diketahui: mean = 8, median = 5, deviasi standart = 6, dengan “modus = 3 median – 2 mean” dan
A. 1,25
B. 1,5
C. 1,75
D. 2,25
Jawab:
B. Modus = 3 median – 2 mean ? = 3.5 – 2.8 = 15 – 16 = -1
12. Suatu permainan bersisi delapan, tiga sisinya diberi warna kuning dan tiga sisi lainnya diberi warna hitam dan dua sisi lainnya berwarna biru. Jika permainan tersebut dilempar maka peluang timbulnya sisi hitam adalah….
A. 1/8
B. 1/4
C. 1/2
D. 3/8
Jawab:
D. Jumlah keseluruhan = 8, warna kuning 3 sisi, berarti probabilitasnya= 3/8, warna hitam 3 sisi, berarti probabilitasnya= 3/8, warna biru 2 sisi, berarti probabilitasnya= 2/8
Timbulnya warna hitam = 3/8
13. Yani menjual buah di pasar dengan rincian sebagai berikut:
Berapa probabilitas konsumen membeli jeruk atau duku?
A. 0,45
B. 0,40
C. 0,38
D. 0,27
Jawab:
C.
Jumlah keseluruhan jenis buah = 600
Probabilitas jeruk = 120/600 = 0,2
Probabilitas duku= 110/600 = 0,18
Probabilitas konsumen membeli jeruk atau duku = 0,2 + 0,18 = 0,38
14. Dari hasil penelitian diperoleh data pembaca koran X, Y, Z sebagai berikut: X = 7 %, Y = 18 %, Z = 25 %, X dan Y = 8 %, X dan Z = 8 %, Y dan Z = 9 %, X dan Y dan Z = 6 %. Jika dipilih secara acak berapa probabilitas pembaca koran X atau Y?
A. 0,37
B. 0,26
C. 0,23
D. 0,17
Jawab:
D. Dipilih secara acak, probabilitas pembaca Koran X atau Y
?P(AUB) = P(A) + P(B) – P(AnB) = 7% +18% - 8% = 17% = 0,17
15. Perhatikan tabel berikut ini:
Berapa probabilitas pada saat panas pakai kacamata?
A. 0,25
B. 0,2
C. 0,1
D. 0,05
Jawab:
C. Dilihat pada baris panas dan pada kolom pakai kacamata, ternyata ada 20 lalu dibagi dengan jumlah semua 200 ? 20/200 = 0,1
16. Perhatikan data buah jambu berikut ini:
Berapa probabilitas rasa jambu merah dan manis?
A. 0,45
B. 0,5
C. 0,52
D. 0,55
Jawab:
B. Jambu merah dan manis =
(40/150)/(80/150)= 40/150 x 150/80=40/80= 0,5
17. Diketahui data berat badan siswa kelas 5 SD Pagi berikut ini:
Berapa nilai harapan rata-rata cuplikan µ = X P(X)?
A. 41
B. 41,8
C. 42
D. 42,1
Jawab:
B. E(X) = µ = 1/n (40+42+38+50+39) = 41,8
18. Diketahui data berat badan siswa kelas 5 SD Pagi berikut ini:
Berapa simpangan baku rata-rata cuplikan s ?
A. 3,4
B. 3,6
C. 3,9
D. 4
Jawab:
A. ?(x -µ)2. P(X) = s2 = 11,564
? simpangan baku rata-rata cuplikan s = v(s^2 ) = v11,564 = 3,4
19. Rata-rata hasil produksi kue marmer per hari 300 kg dengan simpangan baku sebesar 30 kg. Berapa probabilitasnya jika diambil sebuah cuplikan acak sebanyak 40 penjual yang menginginkan rata-rata hasil produksinya lebih besar dari 400 kg. (Perhitungan menggunakan dua angka desimal, dan diketahui Pr(Z<0,1) = 0,4602, gambar Pr(Z<1,66) = 0,485, Pr(Z > 4) = 0,00). Gunakan rumus
A. 5%
B. 4,9%
C. 4,6%
D. 0%
Jawab:
D.
Pr(Z > 4) = 0,00 ? Z = 21,05 ? probabilitasnya = 0%
20. Rumusan rata-rata simpangan kuadrat (RSK) adalah gambar RSK??E(ß_(i )–ß)?^2 , nilai populasi yang diinginkan adalah...
Jawab:
C. Penduga terbaik karena memiliki kombinasi bias yang kecil dan varian yang kecil sehingga dapat dirumuskan untuk memilih pernduga terbaik di antara semua macam penduga. Rumusan tersebut dinamakan rata-rata simpangan kuadrat (RSK).
Rumus:
21. Dalam suatu penelitian tentang penggunaan sabun mandi untuk memperluas pemasaran dilakukan dua kali. Pada tahap pertama diambil suplikan acak sebanyak 125 orang dan diperoleh P1 =0,5. Pada tahap kedua diambil cuplikan acak sebanyak 160 orang diperoleh P2 = 0,8. Dengan derajat kepercayaan 95 %, hitunglah pendugaan rentang untuk kenaikkan proporsi luas pasar. Gunakan rumus:
A. 0,1926 < (p2 – p1) < 0,4074
B. 0,926 < (p2 – p1) < 0,098
C. 0,038 < (p2 – p1) < 0,4074
D. 0,4074 < (p2 – p1) < 0,2454
Jawab:
A. Jawaban anda benar
22. Dalam penelitian produksi boneka diperoleh .
Ujilah apakah H0 ditolak atau diterima.Gunakan rumus:
A. H0 diterima
B. Ha diterima
C. H0 ditolak
D. Ha ditolak
Jawab:
C. Jawaban anda benar,
23. Hasil pengolahan data diperoleh rata-rata pendapatan = µ0 = Rp 15.000,00/bulan, simpangan baku = Rp.3.000,00/bulan, sampel yang digunakan 14 orang
Dengan menggunakan uji dua sisi dan derajat kepercayaan 95 %, apakah H0 ditolak atau diterima?
A. Ha ditolak
B. H0 diterima
C. Ha diterima
D. H0 ditolak
Jawab:
D. Jawaban anda benar,
24. Dalam uji hipotesis, ditolak keputusan Ho = siswa SD “X” lulus 100%. Namun ternyata sekolah tersebut 100 % muridnya lulus, sehingga yang terjadi adalah kesalahan….
A. populasi
B. tipe I
C. tipe II
D. penetapan a
Jawab:
B. Kemungkinan - kemungkinan yang terjadi waktu melakukan uji hipotesa:
25. Dalam uji hipotesis untuk menilai baik buruknya sampel yang kita peroleh maka dapat dilihat pada....
A. liku (1 – ß)
B. liku ß
C. besaran a
D. besaran (1 – a)
Jawab:
A. Secara teori sebuah liku tentunya memiliki persamaan matematisnya (fungsi). Liku ß memiliki fungsi ß dan liku (1 – ß) memiliki fungsi (1 – ß). Salah satu kegunaan liku (1 – ß) adalah untuk menilai baik buruknya sampel yang kita peroleh.
26. Jika diketahui:
hitunglah rasio F dengan menggunakan rumus
A. 6
B. 8
C. 9
D. 10
Jawab:
B. Jawsaban anda benar
27. Hitunglah rasio F jika diketahui MSSr = 30, SSu = 30, r = 2, c = 3
A. 6
B. 5
C. 4
D. 2
Jawab:
D. Jawaban anda benar
28. Dalam analisis dua faktor diketahui; SSc = 40, C = 5, SSu = 30, r = 2 hitunglah rasio F nya.
A. 1,33
B. 1,31
C. 1,29
D. 1,27
Jawab:
A. Jawaban anda benar,
29. Diketahui:
Hitunglah indeks harganya dengan metode Drobish (Gunakan perhitungan dua angka belakang koma)
A. 183,80
B. 184
C. 185
D. 186,53
Jawab:
C. Jawaban anda benar,
30. Diketahui:
Hitunglah indeks kuantitasnya dengan metode rata-rata angka relatif (I) dengan periode dasar 2009
A. 150
B. 150,5
C. 151,5
D. 152,5
Jawab:
D. Jawaban anda benar
Sekian artikel yang dapat kami sampaikan untuk teman-teman Mahasiswa jurusan Akuntansi terkait Soal Ujian UT Akuntansi ESPA4123 Statistika Ekonomi dan Kunci Jawaban. Dengan adanya soal-soal di atas, kami yakin jika Anda pelajari dengan sungguh-sungguh pemahaman Anda terkait materi-materi pada modul kuliah akan semakin bertambah. Jangan lupa untuk saling berbagi pada teman-teman kuliah Anda yang lainnya. Jika ada pertanyaan silahkan sampaikan pada kami melalui laman Contact, terima kasih.
Teman-teman Mahasiswa Universitas Terbuka tentunya tahu bahwa di dalam pelaksanaan pembelajaran di UT itu tutorialnya hanya dilaksanakan sebanyak delapan kali saja dalam satu semesternya selama dua bulan. Dari tutorial tersebut tentunya tak akan cukup waktu jika harus mengulas semua materi-materi yang pada pada modul kuliah. Disinilah Mahasiswa harus ekstra belajar mandiri di luar kegiatan pembelajaran. Apalagi kita tahu setelah kegiatan tutorial berakhir, Mahasiswa akan menghadapi kegiatan UAS.
Perhatian: Perlu Anda perhatikan, bahwa disini kami mengacu atau berpatokan pada struktur kurikulum UT terbaru, jadi kemungkinan ada mata kuliah yang tidak sesuai dengan mata kuliah di masa registrasi sebelumnya. Jangan khawatir, Anda bisa melihat keseluruhan mata kuliah di artikel kami Soal Ujian UT Akuntansi. Silahkan cari dan pelajari soal-soalnya.
Soal Ujian UT Akuntansi Semester 5 Lainnya:
- Soal Ujian UT Akuntansi EKSI4310 Auditing II
- Soal Ujian UT Akuntansi EKMA4314 Akuntansi Manajemen
- Soal Ujian UT Akuntansi ESPA4123 Statistika Ekonomi
- Soal Ujian UT Akuntansi EKSI4207 Akuntansi Sektor Publik
- Soal Ujian UT Akuntansi EKSI4205 Bank dan Lembaga Keuangan Non Bank
- Soal Ujian UT Akuntansi ISIP4216 Metode Penelitian Sosial
Nilai UAS sendiri merupakan salah satu nilai yang sangat di perhitungkan dalam menentukan nilai akhir dan menentukan Anda lulus atau tidaknya pada mata kuliah yang sedang Anda hadapi. Tak cukup jika Anda hanya mengharapkan nilai yang di berikan oleh Dosen atau Tutor saja. Maka dari itu mulailah giat untuk belajar, nah salah satu bahan belajar yang bisa Anda pakai ialah dengan mempelajari Soal UT yang kami bagikan ini.
Soal UT Akuntansi ESPA4123 Statistika Ekonomi
Dengan mempelajari Soal UT Akuntansi yang kami bagikan ini kami berharap pemahaman Anda akan semakin bertambah. Dan kami yakin dengan mempelajari Soal Akuntansi yang sudah dilengkapi dengan kunci jawaban seperti ini akan jauh lebih efektif untuk Anda ketimbang Anda harus membaca semua materi yang ada pada modul kuliah Anda. Dan semua soal-soal ini bersumber dari situs resmi UT yang mana semua soal-soal ini merupakan soal-soal pilihan. Jadi silahkan Anda pelajari dengan baik semua soal-soalnya.Lihat Juga :
Soal UT ESPA4123 Statistika Ekonomi
1. Kegiatan yang menggunakan metode statistik seperti menghitung regresi dan korelasi sehingga diperoleh gambaran dari keseluruhan data disebut sebagai….A. interpretasi data
B. analisis data
C. presentasi data
D. tabulasi data
Jawab:
B. Benar, Analisis data adalah kegiatan menganalisis data yang sudah dikumpulkan dan telah disusun. Analisis data dilakukan dengan menggunakan metodee statistic seperti: rata-rata hitung , penyimpangan, regresi maupun korelasi. Dengan melakukan analisis data, kita dapat memperoleh gambaran keseluruhan dari data yang dikumpulkan.
2. Data yang dikumpulkan dinyatakan dalam bentuk angka, seperti berat balita di desa Gaharu, disebut sebagai data…..
A. kuantitatif
B. kualitatif
C. primer
D. sekunder
Jawab:
A. Benar, Dalam suatu penelitian sebagian besar data yang dikumpulkan berupa data kuantitatif yaitu data yang dinyatakan dengan menggunakan angka. Sebagai contoh: umur responden, pendapatan, jumlah anak, luas tanah yang dimiliki, jumlah barang yang diproduksi dan sebagainya. Dari data kuantitaif tersebut kita dapat menghitung dan mengetahui karakteristik obyek penelitian.
3. Dari hasil penelitian diperoleh data sebagai berikut: 21, 22, 32, 35, 46, 43, 15, 29, hitung rentang datanya (range).
A. 21
B. 26
C. 28
D. 31
Jawab:
D. Benar, Data diurutkan dari terkecil sampai terbesar dan rentang datanya = data terbesar – data terkecil.
Urutan data: 15, 21, 22, 29, 32, 35, 43, 45, rentang datanya = 46 – 15 = 31
4. Jika diketahui range = 60 dan banyaknya kelas yang diperoleh sebanyak 8, maka nilai kelas intervalnya adalah…
A. 7,3
B. 7
C. 7,5
D. 6,5
Jawab:
C. Benar, Lebar kelas (interval kelas) dapat dihitung dengan membagi range dengan banyaknya kelas yang sudah dibulatkan ? 60 : 8 = 7,5
5. Diketahui data sebagai berikut:
Berapakah frekuensi relatif kelas keempat?
A. 22.22 %
B. 22,52 %
C. 23,45 %
D. 23,55%
Jawab:
A. Benar, Distribusi frekuensi relative adalah distribusi frekuensi yang frekuensinya tidak dinyatakan dalam angka absolute, tetapi dinyatakan dalam angka relative atau dalam persentase dari jumlah frekuensi semua kelas yang ada ? 12 : 54 = 0,2222 x100 % = 22,22%
6. Diketahui data sebagai berikut:
Berapakah frekuensi kumulatif hasil produksi yang kurang dari 40?
A. 27
B. 30
C. 39
D. 54
Jawab:
C. Distribusi frekuensi kumulatif adalah distribusi frekuensi yang secara berturut-turut dan bertahap memasukakan frekuensi pada kelas-kelas yang lain. ? 8+10+9+12 = 39
7. Diketahui data tentang hasil penjualan nasi goreng yang sudah dikelompokkan sebagai berikut:
Berapa rata-rata hitungnya?
A. 48,25
B. 48,45
C. 48,75
D. 48.95
Jawab:
D. ? rata-rata hitungnya = 1860 :38 = 48,95
8. Diketahui data tingkat keserdasan anak SD sebagai berikut:
Hitung nilai desil keempatnya
A. 99,75
B. 99,95
C. 100,25
D. 100,95
Jawab:
D. Pengertian desil adalah angka yang membagi data menjadi 10 bagian yang sama besar.
Untuk mempelajari lebih lanjut buka modul hal 2.27 dst.
9. Diketahui data produksi bawang merah merah per bulan yang tidak dikelompokkan sebagai berikut: 20, 35, 35, 40, 50. Hitung deviasi rata-ratanya.
A. 7,4
B. 7,2
C. 6,6
D. 6
Jawab:
B. Deviasi rata-rata adalah rata-rata penyimpangan data dari rata-rata (mean)nya.
10. Dari pengolahan hasil penelitian panen apel didapatkan data sebagi berikut: n = 120,
hitung deviasi standarnya.
A. 5
B. 7
C. 8
D. 9
Jawab:
A. Oleh karena sudah tersedia hasil pengolahan
berarti data sudah dikelompokkan, maka rumus yang digunakan adalah
11. Hitunglah kecondongannya jika diketahui: mean = 8, median = 5, deviasi standart = 6, dengan “modus = 3 median – 2 mean” dan
A. 1,25
B. 1,5
C. 1,75
D. 2,25
Jawab:
B. Modus = 3 median – 2 mean ? = 3.5 – 2.8 = 15 – 16 = -1
12. Suatu permainan bersisi delapan, tiga sisinya diberi warna kuning dan tiga sisi lainnya diberi warna hitam dan dua sisi lainnya berwarna biru. Jika permainan tersebut dilempar maka peluang timbulnya sisi hitam adalah….
A. 1/8
B. 1/4
C. 1/2
D. 3/8
Jawab:
D. Jumlah keseluruhan = 8, warna kuning 3 sisi, berarti probabilitasnya= 3/8, warna hitam 3 sisi, berarti probabilitasnya= 3/8, warna biru 2 sisi, berarti probabilitasnya= 2/8
Timbulnya warna hitam = 3/8
13. Yani menjual buah di pasar dengan rincian sebagai berikut:
Berapa probabilitas konsumen membeli jeruk atau duku?
A. 0,45
B. 0,40
C. 0,38
D. 0,27
Jawab:
C.
Jumlah keseluruhan jenis buah = 600
Probabilitas jeruk = 120/600 = 0,2
Probabilitas duku= 110/600 = 0,18
Probabilitas konsumen membeli jeruk atau duku = 0,2 + 0,18 = 0,38
14. Dari hasil penelitian diperoleh data pembaca koran X, Y, Z sebagai berikut: X = 7 %, Y = 18 %, Z = 25 %, X dan Y = 8 %, X dan Z = 8 %, Y dan Z = 9 %, X dan Y dan Z = 6 %. Jika dipilih secara acak berapa probabilitas pembaca koran X atau Y?
A. 0,37
B. 0,26
C. 0,23
D. 0,17
Jawab:
D. Dipilih secara acak, probabilitas pembaca Koran X atau Y
?P(AUB) = P(A) + P(B) – P(AnB) = 7% +18% - 8% = 17% = 0,17
15. Perhatikan tabel berikut ini:
Berapa probabilitas pada saat panas pakai kacamata?
A. 0,25
B. 0,2
C. 0,1
D. 0,05
Jawab:
C. Dilihat pada baris panas dan pada kolom pakai kacamata, ternyata ada 20 lalu dibagi dengan jumlah semua 200 ? 20/200 = 0,1
16. Perhatikan data buah jambu berikut ini:
Berapa probabilitas rasa jambu merah dan manis?
A. 0,45
B. 0,5
C. 0,52
D. 0,55
Jawab:
B. Jambu merah dan manis =
(40/150)/(80/150)= 40/150 x 150/80=40/80= 0,5
17. Diketahui data berat badan siswa kelas 5 SD Pagi berikut ini:
Berapa nilai harapan rata-rata cuplikan µ = X P(X)?
A. 41
B. 41,8
C. 42
D. 42,1
Jawab:
B. E(X) = µ = 1/n (40+42+38+50+39) = 41,8
18. Diketahui data berat badan siswa kelas 5 SD Pagi berikut ini:
Berapa simpangan baku rata-rata cuplikan s ?
A. 3,4
B. 3,6
C. 3,9
D. 4
Jawab:
A. ?(x -µ)2. P(X) = s2 = 11,564
? simpangan baku rata-rata cuplikan s = v(s^2 ) = v11,564 = 3,4
19. Rata-rata hasil produksi kue marmer per hari 300 kg dengan simpangan baku sebesar 30 kg. Berapa probabilitasnya jika diambil sebuah cuplikan acak sebanyak 40 penjual yang menginginkan rata-rata hasil produksinya lebih besar dari 400 kg. (Perhitungan menggunakan dua angka desimal, dan diketahui Pr(Z<0,1) = 0,4602, gambar Pr(Z<1,66) = 0,485, Pr(Z > 4) = 0,00). Gunakan rumus
A. 5%
B. 4,9%
C. 4,6%
D. 0%
Jawab:
D.
Pr(Z > 4) = 0,00 ? Z = 21,05 ? probabilitasnya = 0%
20. Rumusan rata-rata simpangan kuadrat (RSK) adalah gambar RSK??E(ß_(i )–ß)?^2 , nilai populasi yang diinginkan adalah...
Jawab:
C. Penduga terbaik karena memiliki kombinasi bias yang kecil dan varian yang kecil sehingga dapat dirumuskan untuk memilih pernduga terbaik di antara semua macam penduga. Rumusan tersebut dinamakan rata-rata simpangan kuadrat (RSK).
Rumus:
21. Dalam suatu penelitian tentang penggunaan sabun mandi untuk memperluas pemasaran dilakukan dua kali. Pada tahap pertama diambil suplikan acak sebanyak 125 orang dan diperoleh P1 =0,5. Pada tahap kedua diambil cuplikan acak sebanyak 160 orang diperoleh P2 = 0,8. Dengan derajat kepercayaan 95 %, hitunglah pendugaan rentang untuk kenaikkan proporsi luas pasar. Gunakan rumus:
A. 0,1926 < (p2 – p1) < 0,4074
B. 0,926 < (p2 – p1) < 0,098
C. 0,038 < (p2 – p1) < 0,4074
D. 0,4074 < (p2 – p1) < 0,2454
Jawab:
A. Jawaban anda benar
22. Dalam penelitian produksi boneka diperoleh .
Ujilah apakah H0 ditolak atau diterima.Gunakan rumus:
A. H0 diterima
B. Ha diterima
C. H0 ditolak
D. Ha ditolak
Jawab:
C. Jawaban anda benar,
23. Hasil pengolahan data diperoleh rata-rata pendapatan = µ0 = Rp 15.000,00/bulan, simpangan baku = Rp.3.000,00/bulan, sampel yang digunakan 14 orang
Dengan menggunakan uji dua sisi dan derajat kepercayaan 95 %, apakah H0 ditolak atau diterima?
A. Ha ditolak
B. H0 diterima
C. Ha diterima
D. H0 ditolak
Jawab:
D. Jawaban anda benar,
24. Dalam uji hipotesis, ditolak keputusan Ho = siswa SD “X” lulus 100%. Namun ternyata sekolah tersebut 100 % muridnya lulus, sehingga yang terjadi adalah kesalahan….
A. populasi
B. tipe I
C. tipe II
D. penetapan a
Jawab:
B. Kemungkinan - kemungkinan yang terjadi waktu melakukan uji hipotesa:
25. Dalam uji hipotesis untuk menilai baik buruknya sampel yang kita peroleh maka dapat dilihat pada....
A. liku (1 – ß)
B. liku ß
C. besaran a
D. besaran (1 – a)
Jawab:
A. Secara teori sebuah liku tentunya memiliki persamaan matematisnya (fungsi). Liku ß memiliki fungsi ß dan liku (1 – ß) memiliki fungsi (1 – ß). Salah satu kegunaan liku (1 – ß) adalah untuk menilai baik buruknya sampel yang kita peroleh.
26. Jika diketahui:
hitunglah rasio F dengan menggunakan rumus
A. 6
B. 8
C. 9
D. 10
Jawab:
B. Jawsaban anda benar
27. Hitunglah rasio F jika diketahui MSSr = 30, SSu = 30, r = 2, c = 3
A. 6
B. 5
C. 4
D. 2
Jawab:
D. Jawaban anda benar
28. Dalam analisis dua faktor diketahui; SSc = 40, C = 5, SSu = 30, r = 2 hitunglah rasio F nya.
A. 1,33
B. 1,31
C. 1,29
D. 1,27
Jawab:
A. Jawaban anda benar,
29. Diketahui:
Hitunglah indeks harganya dengan metode Drobish (Gunakan perhitungan dua angka belakang koma)
A. 183,80
B. 184
C. 185
D. 186,53
Jawab:
C. Jawaban anda benar,
30. Diketahui:
Hitunglah indeks kuantitasnya dengan metode rata-rata angka relatif (I) dengan periode dasar 2009
A. 150
B. 150,5
C. 151,5
D. 152,5
Jawab:
D. Jawaban anda benar
Download Soal UT Akuntansi ESPA4123 Statistika Ekonomi
Soal-soal di atas tidak bisa Anda copy paste, namun kami telah menyiapkan soal-soal di atas dalam bentuk dokumen pdf yang mana bisa Anda unduh langsung melalui link berikut ini.Sekian artikel yang dapat kami sampaikan untuk teman-teman Mahasiswa jurusan Akuntansi terkait Soal Ujian UT Akuntansi ESPA4123 Statistika Ekonomi dan Kunci Jawaban. Dengan adanya soal-soal di atas, kami yakin jika Anda pelajari dengan sungguh-sungguh pemahaman Anda terkait materi-materi pada modul kuliah akan semakin bertambah. Jangan lupa untuk saling berbagi pada teman-teman kuliah Anda yang lainnya. Jika ada pertanyaan silahkan sampaikan pada kami melalui laman Contact, terima kasih.